Saturday, October 25, 2008

Brain

In animals, the brain, or encephalon (Greek for "in the head"), is the control center of the central nervous system. In most animals, the brain is located in the head close to the primary sensory apparatus and the mouth. While all vertebrates have a brain, invertebrates have either a centralized brain or collections of individual ganglia. Brains can be extremely complex. For example, the human brain contains more than 100 billion neurons, each linked to as many as 10,000 others.

History of the Brain

Early views on the function of the brain regarded it to be a form of ³cranial stuffing² of sorts. In Egypt, from the late Middle Kingdom onwards, in preparation for mummification, the brain was regularly removed, for it was the heart that was assumed to be the seat of intelligence. According to Herodotus, during the first step of mummification: ŒThe most perfect practice is to extract as much of the brain as possible with an iron hook, and what the hook cannot reach is mixed with drugs.¹ Over the next five-thousand years, this view came to be reversed; the brain is now known to be the seat of intelligence, although colloquial variations of the former remain as in ³memorizing something by heart².

Overview

The brain is not only important as the site of reason and intelligence, it is also the source of cognition, emotion, memory, and motor, and other forms of learning, and it controls and coordinates most sensory systems, movement, behavior, but it also controls homeostatic body functions such as heart rate, blood pressure, fluid balance, and body temperature. Some behaviors such as simple reflexes and basic locomotion, can be executed under spinal cord control alone.

Most brains exhibit a visible distinction between grey matter and white matter. Grey matter consists of the cell bodies of the neurons, while white matter consists of the fibers (axons) that connect neurons. The axons are surrounded by a fatty insulating sheath called myelin, giving the white matter its distinctive color. The outer, visible layers of the brain are the cortex, and consist mainly of grey matter.

The study of the brain is known as neuroscience, a field of biology aimed at understanding the functions of the brain at every level, from the molecular up to the psychological.

Mind and Brain

In insects, the brain has four parts, the optical lobes, the protocerebrum, the deutocerebrum, and the tritocerebrum. The optical lobes are behind each eye and process visual stimuli. The protocerebrum contains the mushroom bodies, which respond to smell, and the central body complex. In some species such as bees, the mushroom body receives input from the visual pathway as well. The deutocerebrum includes the antennal lobes, which are similar to the mammalian olfactory bulb, and the mechanosensory neuropils which receive information from touch receptors on the head and antennae. The antennal lobes of flies and moths are quite complex.

In cephalopods, the brain has two regions: the supraesophageal mass and the subesophageal mass, separated by the esophagus. The supra- and subesophageal masses are connected to each other on either side of the esophagus by the basal lobes and the dorsal magnocellular lobes. The large optic lobes are sometimes not considered to be part of the brain, as they are anatomically separate and are joined to the brain by the optic stalks. However, the optic lobes perform much visual processing, and so functionally are part of the brain.

Invertebrates

In insects, the brain has four parts, the optical lobes, the protocerebrum, the deutocerebrum, and the tritocerebrum. The optical lobes are behind each eye and process visual stimuli. The protocerebrum contains the mushroom bodies, which respond to smell, and the central body complex. In some species such as bees, the mushroom body receives input from the visual pathway as well. The deutocerebrum includes the antennal lobes, which are similar to the mammalian olfactory bulb, and the mechanosensory neuropils which receive information from touch receptors on the head and antennae. The antennal lobes of flies and moths are quite complex.

In cephalopods, the brain has two regions: the supraesophageal mass and the subesophageal mass, separated by the esophagus. The supra- and subesophageal masses are connected to each other on either side of the esophagus by the basal lobes and the dorsal magnocellular lobes. The large optic lobes are sometimes not considered to be part of the brain, as they are anatomically separate and are joined to the brain by the optic stalks. However, the optic lobes perform much visual processing, and so functionally are part of the brain.

Invertebrates

The telencephalon (cerebrum) is the largest region of the mammalian brain. This is the structure that is most easily visible, and is what most people associate with the "brain". In humans, the fissures (sulci) and convolutions (gyri) give the brain a wrinkled appearance. In non-mammalian vertebrates with no cerebrum, the metencephalon is the highest center in the brain. Because humans walk upright, there is a flexure, or bend, in the brain between the brain stem and the cerebrum. Other vertebrates do not have this flexure, and so comparing the locations of certain brain structures between humans and other vertebrates can be confusing.

Behind (or in humans, below) the cerebrum is the cerebellum. The cerebellum is mainly involved in the control of movement, and is connected by thick white matter fibers (cerebellar peduncles) to the pons.

The cerebrum and the cerebellum each have two hemispheres. The telencephalic hemispheres are connected by the corpus callosum, another large white matter tract. An outgrowth of the telencephalon called the olfactory bulb is a major structure in many animals, but in humans and other primates it is relatively small.

Vertebrate nervous systems are distinguished by encephalization and bilateral symmetry. Encephalization refers to the tendency for more complex organisms to gain larger brains through evolutionary time. Larger vertebrates develop a complex, layered and interconnected neuronal circuitry.

In modern species most closely related to the first vertebrates, brains are covered with gray matter that has a three-layer structure (allocortex). Their brains also contain deep brain nuclei and fiber tracts forming the white matter. Most regions of the human cerebral cortex have six layers of neurons (neocortex).

List of Regions in the Human Brain

Human Brain

The structure of the human brain differs from that of other animals in several important ways. These differences allow for many abilities over and above those of other animals, such as advanced cognitive skills. Human encephalization is especially pronounced in the neocortex, the most complex part of the cerebral cortex. The proportion of the human brain that is devoted to the neocortex - especially to the prefrontal cortex - is larger than in all other animals.

Humans have unique neural capacities, but much of their brain structure is similar to that of other mammals. Basic systems that alert the nervous system to stimulus, that sense events in the environment, and monitor the condition of the body are similar to those of even non-mammalian vertebrates. The neural circuitry underlying human consciousness includes both the advanced neocortex and prototypical structures of the brainstem. The human brain also has a massive number of synaptic connections allowing for a great deal of parallel processing.

Neurobiology

The brain is composed of two broad classes of cells, neurons and glia, both of which contain several different cell types which perform different functions. Interconnected neurons form neural networks (or neural ensembles). These networks are similar to man-made electrical circuits in that they contain circuit elements (neurons) connected by biological wires (nerve fibers). These do not form simple one-to-one electrical circuits like many man-made circuits, however. Typically neurons connect to at least a thousand other neurons. These highly specialized circuits make up systems which are the basis of perception, action, and higher cognitive function.

Histology

Neurons are the cells that generate action potentials and convey information to other cells; these constitute the essential class of brain cells.

In addition to neurons, the brain contains glial cells in a roughly 10:1 proportion to neurons. Glial cells ("glia" is Greek for 'glue') form a support system for neurons. They create the insulating myelin, provide structure to the neuronal network, manage waste, and clean up neurotransmitters. Most types of glia in the brain are present in the entire nervous system. Exceptions include the oligodendrocytes which myelinate neural axons (a role performed by Schwann cells in the peripheral nervous system). The myelin in the oligodendrocytes insulates the axons of some neurons. White matter in the brain is myelinated neurons, while grey matter contains mostly cell soma, dendrites, and unmyelinated portions of axons and glia. The space between neurons is filled with dendrites as well as unmyelinated segments of axons; this area is referred to as the neuropil.

In mammals, the brain also contains connective tissue called the meninges, a system of membranes that separate the skull from the brain. This three-layered covering is made of, from the outside in, dura mater, arachnoid mater, and pia mater. The arachnoid and pia are physically connected and thus often considered as a single layer, the pia-arachnoid. Below the arachnoid is the subarachnoid space which contains cerebrospinal fluid, a substance that protects the nervous system. Blood vessels enter the central nervous system through the perivascular space above the pia mater. The cells in the blood vessel walls are joined tightly, forming the blood-brain barrier which protects the brain from toxins that might enter through the blood.

The brain is bathed in cerebrospinal fluid (CSF), which circulates between layers of the meninges and through cavities in the brain called ventricles. It is important both chemically for metabolism and mechanically for shock-prevention. For example, the human brain weighs about 1-1.5 kg. The mass and density of the brain are such that it will begin to collapse under its own weight. The CSF allows the brain to float, easing the stress caused by the brain¹s mass.

Function

Vertebrate brains receive signals through nerves arriving from the sensors of the organism. These signals are then interpreted throughout the central nervous system; reactions are formulated based upon reflex and learned experiences. A similarly extensive nerve network delivers signals from a brain to control muscles throughout the body. Anatomically, the majority of afferent and efferent nerves (with the exception of the cranial nerves) are connected to the spinal cord, which then transfers the signals to and from the brain.

Sensory input is processed by the brain to recognize danger, find food, identify potential mates, and perform more sophisticated functions. Visual, touch, and auditory sensory pathways of vertebrates are routed to specific nuclei of the thalamus and then to regions of the cerebral cortex that are specific to each sensory system. The visual system, the auditory system, and the somatosensory system. Olfactory pathways are routed to the olfactory bulb, then to various parts of the olfactory system. Taste is routed through the brainstem and then to other portions of the gustatory system.

To control movement the brain has several parallel systems of muscle control. The motor system controls voluntary muscle movement, aided by the motor cortex, cerebellum, and the basal ganglia. The system eventually projects to the spinal cord and then out to the muscle effectors. Nuclei in the brain stem control many involuntary muscle functions such as heart rate and breathing. In addition, many automatic acts (simple reflexes, locomotion) can be controlled by the spinal cord alone.

Brains also produce a portion of the body's hormones that can influence organs and glands elsewhere in a body - conversely, brains also react to hormones produced elsewhere in the body. In mammals, most of these hormones are released into the circulatory system by a structure called the pituitary gland.

It is hypothesized that developed brains derive consciousness from the complex interactions between the numerous systems within the brain. Cognitive processing in mammals occurs in the cerebral cortex but relies on midbrain and limbic functions as well. Among "younger" (in an evolutionary sense) vertebrates, advanced processing involves progressively rostral (forward) regions of the brain.

Hormones, incoming sensory information, and cognitive processing performed by the brain determine the brain state. Stimulus from any source can trigger a general arousal process that focuses cortical operations to processing of the new information. This focusing of cognition is known as attention. Cognitive priorities are constantly shifted by a variety of factors such as hunger, fatigue, belief, unfamiliar information, or threat. The simplest dichotomy related to the processing of threats is the fight-or-flight response mediated by the amygdala and other limbic structures.

Brain Pathology

Clinically, death is defined as an absence of brain activity as measured by EEG. Injuries to the brain tend to affect large areas of the organ, sometimes causing major deficits in intelligence, memory, and movement. Head trauma caused, for example, by vehicle and industrial accidents, is a leading cause of death in youth and middle age. In many cases, more damage is caused by resultant swelling (edema) than by the impact itself. Stroke, caused by the blockage or rupturing of blood vessels in the brain, is another major cause of death from brain damage.

Other problems in the brain can be more accurately classified as diseases rather than injuries. Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, motor neurone disease, and Huntington's disease are caused by the gradual death of individual neurons, leading to decrements in movement control, memory, and cognition.

Currently only the symptoms of these diseases can be treated.

Mental illnesses, such as clinical depression, schizophrenia, bipolar disorder, and post-traumatic stress disorder are brain diseases that impact the personality and typically on other aspects of mental and somatic function.

These disorders may be treated by psychiatric therapy, pharmaceutical intervention, or through a combination of treatments; therapeutic effectiveness varies significantly among individuals.

Some infectious diseases affecting the brain are caused by viral and bacterial infection(s). Infection of the meninges, the membrane that covers the brain, can lead to meningitis.

Bovine spongiform encephalopathy (also known as mad cow disease), is deadly in cattle and is linked to prions.

Kuru is a similar prion-borne degenerative brain disease affecting humans. Both are linked to the ingestion of neural tissue, and may explain the tendency in some species to avoid cannibalism.

Viral or bacterial causes have been substantiated in multiple sclerosis, Parkinson's disease, Lyme disease, encephalopathy, and encephalomyelitis.Some brain disorders are congenital.

Tay-Sachs disease, Fragile X syndrome, and Down syndrome are all linked to genetic and chromosomal errors.

Malfunctions in the embryonic development of the brain can be caused by genetic factors, by drug use, and disease during a mother's pregnancy.

Certain brain disorders are treated by brain surgeons (neurosurgeons) while others are treated by neurologists and psychiatrists.

Brain Wikipedia


Brain Waves

When you drop a small stone in water, you see waves. Similarly our heart and our brain have wave patterns. The wave pattern of the heart is measured by ECG (electro cardiograph). The brain waves are measured by EEG (electro encephalograph).

Using the brain wave studies, scientists have discovered that our brain waves are of four types.

The brain waves also have peaks that are similar to the peaks we see in water waves. The number of times the peak appears in one second is called "cycles per second". For example, the electricity in India is of 50 cycles per second.

Beta (13 to 25 cycles per second)

This brain wave indicates that your conscious mind is in control. It indicates a mental state of logical thought, analysis, and action. You are alert and awake talking, speaking, doing, solving problems, etc.

Alpha (8 to 12 cycles per second)

This brain wave indicates relaxation and meditation. It is a state of relaxed alertness good for inspiration, learning facts fast.

Theta (4 to 8 cycles per second)

Deep meditation. This is associated with life-like imagination. This is best for suggestibility and inspiration. This brain wave is dominant in children of age 2 to 5.

Delta (0.5 to 4 cycles per second)

Deep dreamless sleep. Deep relaxation.

Left brain and right brain working together

Usually the left brain and the right brain waves are independent. They reach peaks independent of each other. During meditation and deep relaxation, the left brain waves and the right brain waves happen together. For both, the peaks are reached together. This is called synchronization. Scientists now believe that synchronization makes much greater mind power available. This is associated with learning large amounts of information very quickly as well as with creativity. Brain self-control

Scientists had long believed that brain activity such as brain waves and secretion of brain chemicals were beyond conscious control. But, experiments on Swami Rama of the Himalayas and on biofeedback have now changed that belief. Now it is proven that some people can control their brain waves, etc.

No comments:

adbrite

Your Ad Here